Figure: Mid-IR spectrum of the inner disc around the star HD 142527, compared to those of common types of dust

This picture presents a mid-IR spectrum of the inner region of the protoplanetary disc around the young star HD 142527, as observed with the MIDI instrument at the VLT Interferometer (upper). Below it are shown laboratory spectra of two crystalline minerals as well as of an Interplanetary Dust Particle (IDP; captured in the Earth's upper atmosphere) with hydrated silicates and, at the bottom, a typical telescopic spectrum of dust grains in the interstellar space. The spectral "signatures" of crystalline pyroxene and olivine, i.e., peaks at wavelength 9.2 and 11.3 µm, respectively, are clearly visible in the spectrum of the inner stellar disc, demonstrating the presence of these species in that region of the disc.

The Sun was born about 4,500 million years ago from a cold and massive cloud of interstellar gas and dust that collapsed under its own gravitational pull. A dusty disc was present around the young star, in which the Earth and other planets, as well as comets and asteroids were later formed.

This epoch is long gone, but we may still witness that same process by observing the infrared emission from very young stars and the dusty protoplanetary discs around them. So far, however, the available instrumentation did not allow a study of the distribution of the different components of the dust in such discs; even the closest known are too far away for the best single telescopes to resolve them. But now, as Francesco Paresce, Project Scientist for the VLT Interferometer and a member of the team from ESO explains, "With the VLTI we can combine the light from two well-separated large telescopes to obtain unprecedented angular resolution. This has allowed us, for the first time, to peer directly into the innermost region of the discs around some nearby young stars, right in the place where we expect planets like our Earth are forming or will soon form".

Specifically, new interferometric observations of three young stars by an international team, using the combined power of two 8.2-m VLT telescopes a hundred metres apart, has achieved sufficient image sharpness (about 0.02 arcsec) to measure the infrared emission from the inner region of the discs around three stars (corresponding approximately to the size of the Earth's orbit around the Sun) and the emission from the outer part of those discs. The corresponding infrared spectra have provided crucial information about the chemical composition of the dust in the discs and also about the average grain size.

These trailblazing observations show that the inner part of the discs is very rich in crystalline silicate grains ("sand") with an average diameter of about 0.001 mm. They are formed by coagulation of much smaller, amorphous dust grains that were omnipresent in the interstellar cloud that gave birth to the stars and their discs.

Model calculations show that crystalline grains should be abundantly present in the inner part of the disc at the time of formation of the Earth. In fact, the meteorites in our own solar system are mainly composed of this kind of silicate.

Dutch astronomer Rens Waters, a member of the team from the Astronomical Institute of University of Amsterdam, is enthusiastic: "With all the ingredients in place and the formation of larger grains from dust already started, the formation of bigger and bigger chunks of stone and, finally, Earth-like planets from these discs is almost unavoidable!"

Credit: European Southern Observatory (ESO)

http://www.eso.org/outreach/press-rel/pr-2004/pr-27-04.html